Arterial specification precedes microvascular restitution in the peri-infarct cortex that is driven by small microvessels

动脉规范化先于梗塞周围皮质的微血管重建,后者由小微血管驱动

阅读:3
作者:Nina Hagemann, Yachao Qi, Ayan Mohamud Yusuf, AnRan Li, Xiaoni Zhang, Philippa Spangenberg, Anthony Squire, Thorsten R Doeppner, Fengyan Jin, Shuo Zhao, Jianxu Chen, Axel Mosig, Matthias Gunzer, Dirk M Hermann

Abstract

Evaluation of microvascular networks was impeded until recently by the need of histological tissue sectioning, which precluded 3D analyses. Using light-sheet microscopy, we investigated microvascular network characteristics in the peri-infarct cortex of mice 3-56 days after transient middle cerebral artery occlusion. In animal subgroups, the sphingosine-1-phosphate analog FTY720 (Fingolimod) was administered starting 24 hours post-ischemia. Light-sheet microscopy revealed a striking pattern of microvascular changes in the peri-infarct cortex, that is, a loss of microvessels, which was most prominent after 7 days and followed by the reappearance of microvessels over 56 days which revealed an increased branching point density and shortened branches. Using a novel AI-based image analysis algorithm we found that the length density of microvessels expressing the arterial specification marker α-smooth muscle actin markedly increased in the peri-infarct cortex already at 7 days post-ischemia. The length and branch density of small microvessels, but not of intermediate or large microvessels increased above pre-ischemic levels within 14-56 days. FTY720 increased the length and branch density of small microvessels. This study demonstrates long-term alterations of microvascular architecture post-ischemia indicative of increased collateralization most notably of small microvessels. Light-sheet microscopy will greatly advance the assessment of microvascular responses to restorative stroke therapies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。