Genetic dissection of down syndrome-associated alterations in APP/amyloid-β biology using mouse models

使用小鼠模型对唐氏综合征相关的 APP/淀粉样β蛋白生物学改变进行遗传分析

阅读:11
作者:Justin L Tosh, Elena R Rhymes, Paige Mumford, Heather T Whittaker, Laura J Pulford, Sue J Noy, Karen Cleverley; LonDownS Consortium; Matthew C Walker, Victor L J Tybulewicz, Rob C Wykes, Elizabeth M C Fisher, Frances K Wiseman

Abstract

Individuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early-onset Alzheimer's disease, in which amyloid-β accumulates in the brain. Amyloid-β is a product of the chromosome 21 gene APP (amyloid precursor protein) and the extra copy or 'dose' of APP is thought to be the cause of this early-onset Alzheimer's disease. However, other chromosome 21 genes likely modulate disease when in three-copies in people with Down syndrome. Here we show that an extra copy of chromosome 21 genes, other than APP, influences APP/Aβ biology. We crossed Down syndrome mouse models with partial trisomies, to an APP transgenic model and found that extra copies of subgroups of chromosome 21 gene(s) modulate amyloid-β aggregation and APP transgene-associated mortality, independently of changing amyloid precursor protein abundance. Thus, genes on chromosome 21, other than APP, likely modulate Alzheimer's disease in people who have Down syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。