mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging

mTOR 信号在从加速衰老小鼠模型中分离的肌肉来源的干细胞/祖细胞中观察到的缺陷中起着关键作用

阅读:2
作者:Koji Takayama, Yohei Kawakami, Mitra Lavasani, Xiaodong Mu, James H Cummins, Takashi Yurube, Ryosuke Kuroda, Masahiro Kurosaka, Freddie H Fu, Paul D Robbins, Laura J Niedernhofer, Johnny Huard

Abstract

Mice expressing reduced levels of ERCC1-XPF (Ercc1-/Δ mice) demonstrate premature onset of age-related changes due to decreased repair of DNA damage. Muscle-derived stem/progenitor cells (MDSPCs) isolated from Ercc1-/Δ mice have an impaired capacity for cell differentiation. The mammalian target of rapamycin (mTOR) is a critical regulator of cell growth in response to nutrient, hormone, and oxygen levels. Inhibition of the mTOR pathway extends the lifespan of several species. Here, we examined the role of mTOR in regulating the MDSPC dysfunction that occurs with accelerated aging. We show that mTOR signaling pathways are activated in Ercc1-/Δ MDSPCs compared with wild-type (WT) MDSPCs. Additionally, inhibiting mTOR with rapamycin promoted autophagy and improved the myogenic differentiation capacity of the Ercc1-/Δ MDSPCs. The percent of apoptotic and senescent cells in Ercc1-/Δ MDSPC cultures was decreased upon mTOR inhibition. These results establish that mTOR signaling contributes to stem cell dysfunction and cell fate decisions in response to endogenous DNA damage. Therefore, mTOR represents a potential therapeutic target for improving defective, aged stem cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1375-1382, 2017.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。