Mechanism of the orotidine 5'-monophosphate decarboxylase-catalyzed reaction: effect of solvent viscosity on kinetic constants

乳清酸苷5'-单磷酸脱羧酶催化反应的机理:溶剂粘度对动力学常数的影响

阅读:9
作者:B McKay Wood, Kui K Chan, Tina L Amyes, John P Richard, John A Gerlt

Abstract

Orotidine 5'-monophosphate decarboxylase (OMPDC) is an exceptionally proficient catalyst: the rate acceleration (k(cat)/k(non)) is 7.1 x 10(16), and the proficiency [(k(cat)/K(M))/k(non)] is 4.8 x 10(22) M(-1). The structural basis for the large rate acceleration and proficiency is unknown, although the mechanism has been established to involve a stabilized carbanion intermediate. To provide reaction coordinate context for interpretation of the values of k(cat), k(cat)/K(M), and kinetic isotope effects, we investigated the effect of solvent viscosity on k(cat) and k(cat)/K(M) for the OMPDCs from Methanothermobacter thermautotrophicus (MtOMPDC) and Saccharomyces cerevisiae (ScOMPDC). For MtOMPDC, we used not only the natural OMP substrate but also a catalytically impaired mutant (D70N) and a more reactive substrate (FOMP); for ScOMPDC, we used OMP and FOMP. With MtOMPDC and OMP, k(cat) is independent of solvent viscosity, indicating that decarboxylation is fully rate-determining; k(cat)/K(M) displays a fractional dependence of solvent viscosity, suggesting that both substrate binding and decarboxylation determine this kinetic constant. For ScOMPDC with OMP, we observed that both k(cat) and k(cat)/K(M) are fractionally dependent on solvent viscosity, suggesting that the rates of substrate binding, decarboxylation, and product dissociation are similar. Consistent with these interpretations, for both enzymes with FOMP, the increases in the values of k(cat) and k(cat)/K(M) are much less than expected based on the ability of the 5-fluoro substituent to stabilize the anionic intermediate; i.e., substrate binding and product dissociation mask the kinetic effects of stabilization of the intermediate by the substituent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。