Allopregnanolone relieves paclitaxel induced mechanical hypersensitivity via inhibiting spinal cord PGE2-EP2 mediated microglia-neuron signaling

孕烯醇酮通过抑制脊髓 PGE2-EP2 介导的小胶质细胞-神经元信号传导缓解紫杉醇引起的机械超敏反应

阅读:11
作者:Kunlin Guo, Lei Gao, Ping Li, Shanwu Feng, Liping Zhao, Xian Wang

Abstract

Chemotherapy-induced neuropathic pain (CINP) is a serious adverse effect of commonly used chemotherapeutics. Neurosteroid allopregnanolone is suggested to modulate the expression of various receptors or enzymes that involved in pain perception, presenting an analgesic potential. Here, we investigated if allopregnanolone attenuates extracellular signal-regulated kinase (ERK) and its downstream prostaglandin E2 (PGE2) expression in the dorsal spinal cord concomitant with neuropathic pain relief in paclitaxel (PTX)-induced neuropathic pain model rats. The results showed PTX upregulated phosphorylated ERK (p-ERK), PGE2 level, and PGE2 receptor E-prostanoid 2 (EP2) expression in the spinal dorsal horn. Besides, p-ERK inhibitor PD98059 or microglia inhibitor minocycline reduced microglial activation, p-ERK expression, PGE2 release, EP2 expression, and partially alleviated PTX-induced mechanical hypersensitivity. Further, allopregnanolone level in the dorsal spinal cord was observed to decrease in CINP rats, and intragastric administration of exogenous allopregnanolone dose-dependently alleviated PTX-induced mechanical hypersensitivity. Mechanistically, allopregnanolone dose-dependently alleviated PTX-induced microglial activation, p-ERK, PGE2, and EP2 upregulation, as well as cytokines expression in the dorsal spinal cord in CINP rats. Furthermore, subcutaneous injection of allopregnanolone synthesis inhibitor medroxyprogesterone could reduce endogenous allopregnanolone and block all effects of exogenous allopregnanolone in CINP rats. Taken together, these results suggest allopregnanolone presents an analgesic effect for PTX-induced mechanical hypersensitivity, partially via inhibiting the dorsal spinal cord PGE2-EP2 mediated microglia-neuron signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。