Modulation of CB1 cannabinoid receptor alters the electrophysiological properties of cerebellar Purkinje cells in harmaline-induced essential tremor

CB1 大麻素受体的调节改变了哈马林诱发的特发性震颤中小脑浦肯野细胞的电生理特性

阅读:2
作者:Hassan Abbassian, Mehran Ilaghi, Reza Saboori Amleshi, Benjamin Jason Whalley, Mohammad Shabani

Abstract

Essential tremor (ET) is one of the most common motor disorders with debilitating effects on the affected individuals. The endocannabinoid system is widely involved in cerebellar signaling. Therefore, modulation of cannabinoid-1 receptors (CB1Rs) has emerged as a novel target for motor disorders. In this study, we aimed to assess whether modulation of cannabinoid receptors (CBRs) could alter the electrophysiological properties of Purkinje cells (PCs) in the harmaline-induced ET model. Male Wistar rats were assigned to control, harmaline (30 mg/kg), CBR agonist WIN 55,212-2 (WIN; 1 mg/kg), CB1R antagonists AM251 (1 mg/kg) and rimonabant (10 mg/kg). Spontaneous activity and positive and negative evoked potentials of PCs were evaluated using whole-cell patch clamp recording. Findings demonstrated that harmaline exposure induced alterations in the spontaneous and evoked firing behavior of PCs, as evidenced by a significant decrease in the mean number of spikes and half-width of action potential in spontaneous activity. WIN administration exacerbated the electrophysiological function of PCs, particularly in the spontaneous activity of PCs. However, CB1R antagonists provided protective effects against harmaline-induced electrophysiological changes in the spontaneous activity of PCs. Our findings reinforce the pivotal role of the endocannabinoid system in the underlying electrophysiological mechanisms of cerebellar disorders and suggest that antagonism of CB1R might provide therapeutic utility.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。