World Trade Center dust induces nasal and neurological tissue injury while propagating reduced olfaction capabilities and increased anxiety behaviors

世贸中心灰尘会引发鼻腔和神经组织损伤,同时导致嗅觉能力下降和焦虑行为增加

阅读:3
作者:Michelle Hernandez, Joshua Vaughan, Terry Gordon, Morton Lippmann, Sam Gandy, Lung-Chi Chen

Conclusion

Cumulatively, these data provide evidence of WTCPM exposure in relation to tissue damage related to oxidative stress-driven inflammation identified in the nasal cavity, propagated to olfactory bulb tissues and, potentially, over extended periods, to other CNS tissues.

Discussion

The potential molecular drivers of WTCPM-driven tissue injury and olfaction latency may be linked to oxidative/nitrative stress and inflammatory cascades in both upper respiratory nasal and brain tissues.Conclusion: Cumulatively, these data provide evidence of WTCPM exposure in relation to tissue damage related to oxidative stress-driven inflammation identified in the nasal cavity, propagated to olfactory bulb tissues and, potentially, over extended periods, to other CNS tissues.

Material and methods

WTCPM was intranasally administered in mice, evaluating genotypic, histopathologic, and olfaction latency endpoints.

Methods

WTCPM was intranasally administered in mice, evaluating genotypic, histopathologic, and olfaction latency endpoints.

Objective

Previous in vitro and in vivo World Trade Center particulate matter (WTCPM) exposure studies have provided evidence of exposure-driven oxidative/nitrative stress and inflammation on respiratory tract and aortic tissues. What remains to be fully understood are secondary organ impacts due to WTCPM exposure. This study was designed to test if WTC particle-induced nasal and neurologic tissue injury may result in unforeseen functional and behavioral outcomes.Material and

Results

WTCPM exposure was found to incite neurologic injury and olfaction latency in intranasally (IN) exposed mice. Single high-dose and repeat low-dose nasal cavity insults from WTCPM dust resulted in significant olfaction delays and enduring olfaction deficits. Anxiety-dependent behaviors also occurred in mice experiencing olfaction loss including significant body weight loss, increased incidence and time spent in hind stretch postures, as well as increased stationary time and decreased exploratory time. Additionally, WTCPM exposure resulted in increased whole brain wet/dry ratios and wet whole brain to body mass ratios that were correlated with exposure and increased exposure dose (p<0.05).

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。