Brown Adipose Tissue undergoes pathological perturbations and shapes C2C12 myoblast homeostasis in the SOD1-G93A mouse model of Amyotrophic Lateral Sclerosis

在肌萎缩侧索硬化症的SOD1-G93A小鼠模型中,棕色脂肪组织发生病理性紊乱,并影响C2C12成肌细胞的稳态。

阅读:1
作者:Marco Rosina ,Silvia Scaricamazza ,Flaminia Riggio ,Gianmarco Fenili ,Flavia Giannessi ,Alessandro Matteocci ,Valentina Nesci ,Illari Salvatori ,Daniela F Angelini ,Katia Aquilano ,Valerio Chiurchiù ,Daniele Lettieri Barbato ,Nicola Biagio Mercuri ,Cristiana Valle ,Alberto Ferri

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective loss of motor neurons. The contribution of peripheral organs remains incompletely understood. We focused our attention on brown adipose tissue (BAT) and its secreted extracellular vesicles (EVs) given their role in regulating systemic energy balance. In this study, we employed a multi-omics approach, including RNA sequencing (GEO identifier GSE273052) and proteomics (ProteomeXchange identifier PXD054147), to investigate the alterations in BAT and its EVs in the SOD1-G93A mouse model of ALS. Our results revealed consistent changes in the proteomic and transcriptomic profiles of BAT from SOD1-G93A mice, highlighting alterations such as mitochondrial dysfunction and impaired differentiation capacity. Specifically, primary brown adipocytes (PBAs) from SOD1-G93A mice exhibited differentiation impairment, respiratory defects, and alterations in mitochondrial dynamics. Furthermore, the BAT-derived EVs from SOD1-G93A mice displayed distinct changes in size distribution and cargo content. In parallel, such EVs negatively impacted the differentiation and homeostasis of C2C12 murine myoblasts, as well as induced atrophy in C2C12-derived myotubes. These findings suggest that BAT undergoes pathological perturbations in ALS mouse model and could impact on skeletal muscle homeostasis through the secretion of dysfunctional EVs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。