The bactericidal effect of liposomal vancomycin as a topical combating system against Methicillin-resistant Staphylococcus aureus skin wound infection in mice

万古霉素脂质体局部抗小鼠皮肤伤口感染耐甲氧西林金黄色葡萄球菌的杀菌作用

阅读:2
作者:Fahimeh Hajiahmadi, Mohammad Yousef Alikhani, Hanifeh Shariatifar, Mohammad Reza Arabestani, Davoud Ahmadvand

Background

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of skin infections and treatment is difficult due to its resistance to the most of antibiotics. Although vancomycin is often considered as an antibacterial agent of choice for the treatment of MRSA, its use is limited because of the high side effects. One solution is using liposomal formulation for local drug delivery. The

Conclusion

The results showed that synthesized nanoliposome could be applied as a great topical antimicrobial construct for treatment of MRSA skin infections.

Methods

To prepare liposomal vancomycin, the ammonium sulfate gradient using remote loading and freeze-thaw methods was applied. Then, synthesized nanoliposomes were evaluated in terms of particle size, morphology, stability, and encapsulation efficiency. Minimum inhibitory concentration (MIC) of synthesized nanoliposome against MRSA was detected. The cytotoxicity of synthesized nanoliposome was evaluated using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Finally, the topical antibacterial activity of each formulation was tested against MRSA-infected skin wound model in mice.

Results

High encapsulation efficiency was achieved for all synthesized nanoliposomes. The results of in vitro and in vivo showed that liposomal vancomycin was more effective than free vancomycin. Also, synthesized nanoliposome showed no cytotoxicity on human epidermoid cell line.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。