Impact of Helicobacter pylori Infection and Its Major Virulence Factor CagA on DNA Damage Repair

幽门螺杆菌感染及其主要毒力因子CagA对DNA损伤修复的影响

阅读:8
作者:Eleftherios Kontizas, Spyros Tastsoglou, Timokratis Karamitros, Yiannis Karayiannis, Panagoula Kollia, Artemis G Hatzigeorgiou, Dionyssios N Sgouras

Abstract

Helicobacter pylori infection induces a plethora of DNA damages. Gastric epithelial cells, in order to maintain genomic integrity, require an integrous DNA damage repair (DDR) machinery, which, however, is reported to be modulated by the infection. CagA is a major H. pylori virulence factor, associated with increased risk for gastric carcinogenesis. Its pathogenic activity is partly regulated by phosphorylation on EPIYA motifs. Our aim was to identify effects of H. pylori infection and CagA on DDR, investigating the transcriptome of AGS cells, infected with wild-type, ΔCagA and EPIYA-phosphorylation-defective strains. Upon RNA-Seq-based transcriptomic analysis, we observed that a notable number of DDR genes were found deregulated during the infection, potentially resulting to base excision repair and mismatch repair compromise and an intricate deregulation of nucleotide excision repair, homologous recombination and non-homologous end-joining. Transcriptome observations were further investigated on the protein expression level, utilizing infections of AGS and GES-1 cells. We observed that CagA contributed to the downregulation of Nth Like DNA Glycosylase 1 (NTHL1), MutY DNA Glycosylase (MUTYH), Flap Structure-Specific Endonuclease 1 (FEN1), RAD51 Recombinase, DNA Polymerase Delta Catalytic Subunit (POLD1), and DNA Ligase 1 (LIG1) and, contrary to transcriptome results, Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) upregulation. Our study accentuates the role of CagA as a significant contributor of H. pylori infection-mediated DDR modulation, potentially disrupting the balance between DNA damage and repair, thus favoring genomic instability and carcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。