Sulforaphane Prevents Hepatic Insulin Resistance by Blocking Serine Palmitoyltransferase 3-Mediated Ceramide Biosynthesis

萝卜硫素通过阻断丝氨酸棕榈酰转移酶 3 介导的神经酰胺生物合成来预防肝脏胰岛素抵抗

阅读:2
作者:Wendi Teng, Yuan Li, Min Du, Xingen Lei, Siyu Xie, Fazheng Ren

Abstract

Sulforaphane (SFA), a naturally active isothiocyanate compound from cruciferous vegetables used in clinical trials for cancer treatment, was found to possess potency to alleviate insulin resistance. But its underlying molecular mechanisms are still incompletely understood. In this study, we assessed whether SFA could improve insulin sensitivity and glucose homeostasis both in vitro and in vivo by regulating ceramide production. The effects of SFA on glucose metabolism and expression levels of key proteins in the hepatic insulin signaling pathway were evaluated in insulin-resistant human hepatic carcinoma HepG2 cells. The results showed that SFA dose-dependently increased glucose uptake and intracellular glycogen content by regulating the insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathway in insulin-resistant HepG2 cells. SFA also reduced ceramide contents and downregulated transcription of ceramide-related genes. In addition, knockdown of serine palmitoyltransferase 3 (SPTLC3) in HepG2 cells prevented ceramide accumulation and alleviated insulin resistance. Moreover, SFA treatment improved glucose tolerance and insulin sensitivity, inhibited SPTLC3 expression and hepatic ceramide production and reduced hepatic triglyceride content in vivo. We conclude that SFA recovers glucose homeostasis and improves insulin sensitivity by blocking ceramide biosynthesis through modulating SPTLC3, indicating that SFA may be a potential candidate for prevention and amelioration of hepatic insulin resistance via a ceramide-dependent mechanism.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。