Polyanionic microbicides modify Toll-like receptor-mediated cervicovaginal immune responses

多聚阴离子杀微生物剂可改变 Toll 样受体介导的宫颈阴道免疫反应

阅读:9
作者:R T Trifonova, G F Doncel, R N Fichorova

Abstract

Topical microbicides are being developed as a preventative approach to reduce the sexual transmission of human immunodeficiency virus type 1 (HIV-1) and other infections. For them to be efficacious, it is believed that they should avoid inducing inflammation while allowing the vaginal epithelium to initiate protective Toll-like receptor (TLR)-mediated innate responses against pathogens. In this study, human cervical and vaginal epithelial cells were exposed to polyanionic HIV entry inhibitors and the following synthetic TLR ligands: (i) the bacterial lipoprotein Pam(3)CSK(4), binding cell surface TLR1/TLR2; (ii) macrophage activating lipopeptide 2 (MALP-2), binding cell surface TLR2/TLR6; and (iii) the viral double-stranded RNA analog poly(I:C), recognized by intracellular TLR3. Cell activation was assessed by nuclear factor kappaB (NF-kappaB) reporter gene transactivation and cytokine production. In spite of enhancing TLR-triggered NF-kappaB activation, the polyanionic microbicide compounds dextran sulfate and polystyrene sulfonate significantly inhibited TLR-mediated cytokine production. They decreased cytokine mRNA and protein levels of proinflammatory (interleukin-8 [IL-8] and IL-1beta) and antiviral (beta interferon) cytokines following epithelial cell stimulation with Pam(3)CSK(4), MALP-2, or poly(I:C). These activities were associated with the sulfate/sulfonate moieties of the polyanionic compounds, since the unsulfated dextran control did not show any effects. Our data demonstrate that these microbicide compounds are capable of selectively interfering with TLR-mediated epithelial responses at different points in their signaling pathways and underscore the importance of expanding the assessment of microbicide compatibility with vaginal innate immune function. Further studies are warranted to determine the impact of this interference on HIV-1 transmission risk.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。