Investigating the synthesis parameters of durian skin-based activated carbon and the effects of silver nanocatalysts on its recyclability in methylene blue removal

研究榴莲皮基活性炭的合成参数及银纳米催化剂对其回收利用去除亚甲蓝的影响

阅读:7
作者:Dzilal Amir, Ricca Rahman Nasaruddin, Maryam Yousefi, Mohd Sufri Mastuli, Sarina Sulaiman, Md Zahangir Alam, Nurul Sakinah Engliman

Abstract

Activated carbon (AC) is the most common and economically viable adsorbent for eliminating toxic organic pollutants, particularly dyes, from wastewater. Its widespread adoption is due to the simplicity and affordable production of AC, wherein low-cost agricultural wastes, such as durian skin can be used. Converting durian skin into AC presents a promising solution for its solid waste management. However, inherent drawbacks such as its non-selectivity, relatively short lifespan and laborious replacement and recovery processes diminish the overall efficacy of AC as an adsorbent. To address these challenges, the immobilisation of metal nanocatalysts such as silver nanoparticles (AgNPs) is one of the emerging solutions. AgNPs can facilitate the regeneration of the adsorption sites of AC by catalysing the conversion of the adsorbed dyes into harmless and simpler molecules. Nevertheless, the immobilisation of AgNPs on AC surface can be challenging as the pore size formation of AC is hard to control and the nanomaterials can easily leach out from the AC surface. Hence, in this study, we synthesised AC from durian skin (DS) and immobilised AgNPs on the AC-DS surface. Then, we used methylene blue (MB) removal for studying the adsorption capability and recyclability of the AC-DS. In the synthesis of AC-DS, the influences of reaction temperature, activating agent, and acid-washing to its capability in adsorptive removal of MB in solution were first determined. It was found that 400 °C, KOH activating agent, and the presence of acid-washing (50% of HNO3) resulted in AC-DS with the highest percentage of MB removal (91.49 ± 2.86%). Then, the overall results from three recyclability experiments demonstrate that AC-DS with immobilised AgNPs exhibited higher MB removal after several cycles (up to 6 cycles) as compared to AC-DS alone, proving the benefit of AgNPs for the recyclability of AC-DS. We also found that AgNPs/Citrate@AC-DS exhibited better adsorption capability and recyclability as compared to AgNPs/PVP@AC-DS indicating significant influences of type of stabilisers in this study. This study also demonstrates that the presence of more oxygen-containing functional groups (i.e., carboxyl and hydroxyl functional groups) after acid-washing on AC-DS and in citrate molecules, has greater influence to the performance of AC-DS and AgNPs/Citrate@AC-DS in the removal of MB as compared to the influences of their BET surface area and pore structure. The findings in this study have the potential to promote and serve as a guideline for harnessing the advantages of nanomaterials, such as AgNPs, to enhance the properties of AC for environmental applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。