Carotid body chemosensory responses in mice deficient of TASK channels

缺乏 TASK 通道的小鼠的颈动脉体化学感应反应

阅读:2
作者:Patricia Ortega-Sáenz, Konstantin L Levitsky, María T Marcos-Almaraz, Victoria Bonilla-Henao, Alberto Pascual, José López-Barneo

Abstract

Background K(+) channels of the TASK family are believed to participate in sensory transduction by chemoreceptor (glomus) cells of the carotid body (CB). However, studies on the systemic CB-mediated ventilatory response to hypoxia and hypercapnia in TASK1- and/or TASK3-deficient mice have yielded conflicting results. We have characterized the glomus cell phenotype of TASK-null mice and studied the responses of individual cells to hypoxia and other chemical stimuli. CB morphology and glomus cell size were normal in wild-type as well as in TASK1(-/-) or double TASK1/3(-/-) mice. Patch-clamped TASK1/3-null glomus cells had significantly higher membrane resistance and less hyperpolarized resting potential than their wild-type counterpart. These electrical parameters were practically normal in TASK1(-/-) cells. Sensitivity of background currents to changes of extracellular pH was drastically diminished in TASK1/3-null cells. In contrast with these observations, responsiveness to hypoxia or hypercapnia of either TASK1(-/-) or double TASK1/3(-/-) cells, as estimated by the amperometric measurement of catecholamine release, was apparently normal. TASK1/3 knockout cells showed an enhanced secretory rate in basal (normoxic) conditions compatible with their increased excitability. Responsiveness to hypoxia of TASK1/3-null cells was maintained after pharmacological blockade of maxi-K(+) channels. These data in the TASK-null mouse model indicate that TASK3 channels contribute to the background K(+) current in glomus cells and to their sensitivity to external pH. They also suggest that, although TASK1 channels might be dispensable for O(2)/CO(2) sensing in mouse CB cells, TASK3 channels (or TASK1/3 heteromers) could mediate hypoxic depolarization of normal glomus cells. The ability of TASK1/3(-/-) glomus cells to maintain a powerful response to hypoxia even after blockade of maxi-K(+) channels, suggests the existence of multiple sensor and/or effector mechanisms, which could confer upon the cells a high adaptability to maintain their chemosensory function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。