Carotid body chemosensory responses in mice deficient of TASK channels

缺乏 TASK 通道的小鼠的颈动脉体化学感应反应

阅读:8
作者:Patricia Ortega-Sáenz, Konstantin L Levitsky, María T Marcos-Almaraz, Victoria Bonilla-Henao, Alberto Pascual, José López-Barneo

Abstract

Background K(+) channels of the TASK family are believed to participate in sensory transduction by chemoreceptor (glomus) cells of the carotid body (CB). However, studies on the systemic CB-mediated ventilatory response to hypoxia and hypercapnia in TASK1- and/or TASK3-deficient mice have yielded conflicting results. We have characterized the glomus cell phenotype of TASK-null mice and studied the responses of individual cells to hypoxia and other chemical stimuli. CB morphology and glomus cell size were normal in wild-type as well as in TASK1(-/-) or double TASK1/3(-/-) mice. Patch-clamped TASK1/3-null glomus cells had significantly higher membrane resistance and less hyperpolarized resting potential than their wild-type counterpart. These electrical parameters were practically normal in TASK1(-/-) cells. Sensitivity of background currents to changes of extracellular pH was drastically diminished in TASK1/3-null cells. In contrast with these observations, responsiveness to hypoxia or hypercapnia of either TASK1(-/-) or double TASK1/3(-/-) cells, as estimated by the amperometric measurement of catecholamine release, was apparently normal. TASK1/3 knockout cells showed an enhanced secretory rate in basal (normoxic) conditions compatible with their increased excitability. Responsiveness to hypoxia of TASK1/3-null cells was maintained after pharmacological blockade of maxi-K(+) channels. These data in the TASK-null mouse model indicate that TASK3 channels contribute to the background K(+) current in glomus cells and to their sensitivity to external pH. They also suggest that, although TASK1 channels might be dispensable for O(2)/CO(2) sensing in mouse CB cells, TASK3 channels (or TASK1/3 heteromers) could mediate hypoxic depolarization of normal glomus cells. The ability of TASK1/3(-/-) glomus cells to maintain a powerful response to hypoxia even after blockade of maxi-K(+) channels, suggests the existence of multiple sensor and/or effector mechanisms, which could confer upon the cells a high adaptability to maintain their chemosensory function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。