Mulberry Extract Attenuates Endothelial Dysfunction through the Regulation of Uncoupling Endothelial Nitric Oxide Synthase in High Fat Diet Rats

桑树提取物通过调节高脂饮食大鼠的解偶联内皮型一氧化氮合酶来减轻内皮功能障碍

阅读:8
作者:Geum-Hwa Lee, The-Hiep Hoang, Eun-Soo Jung, Su-Jin Jung, Soo-Wan Chae, Han-Jung Chae

Abstract

Dyslipidemia is associated with endothelial dysfunction, which is linked to nitric oxide (NO) biology. The coupling of endothelial NO synthase with cofactors is a major step for NO release. This study is aimed to investigate the vascular pharmacology effects of mulberry in rat thoracic aorta and human vascular endothelial cells. In vitro, we investigated the protective effects of the mulberry extract and its main component cyanidin-3-rutinoside (C-3-R), against oxidized low-density lipoprotein (ox-LDL)-induced endothelial nitric oxide synthase (eNOS) uncoupling. Whereas ox-LDL significantly decreased NO levels in endothelial cells, mulberry extract, and C-3-R significantly recovered NO levels and phospho-eNOS Thr495 and Ser1177 expression. In vivo, mulberry was administered to 60% of high-fat diet (w/w)-fed Sprague Dawley (SD) rats for six weeks, in which endothelium-dependent relaxations were significantly improved in organ bath studies and isometric tension recordings. Consistently, aortic expressions of phospho-eNOS and nitrotyrosine were increased. Mulberry also raised serum NO levels, increased phosphorylation of eNOS, and reduced nitrotyrosine and intracellular reactive oxygen species (ROS) in aortas, showing that mulberry preserves endothelium-dependent relaxation in aortas from high-fat diet rats. We suggest that this effect is mediated through enhanced NO bioavailability, in which the regulation of ROS and its reduced eNOS uncoupling are involved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。