Cyanidin-3-O-Glucoside Ameliorates Palmitic-Acid-Induced Pancreatic Beta Cell Dysfunction by Modulating CHOP-Mediated Endoplasmic Reticulum Stress Pathways

花青素-3-O-葡萄糖苷通过调节 CHOP 介导的内质网应激通路改善棕榈酸诱导的胰腺 β 细胞功能障碍

阅读:2
作者:Yunan Chen, Xueyan Li, Lei Su, Qianrong Hu, Wenli Li, Jialin He, Lina Zhao

Abstract

Cyanidin-3-O-glucoside (C3G) is a natural colorant with anti-diabetic properties, while its underlying mechanisms remain far from clear. Here, we investigated the protective role of C3G on palmitic acid (PA)-induced pancreatic beta cell dysfunction and further decipher its possible molecular mechanisms. Both primary isolated mouse islets and the INS-1E cell were used, and treated with a mixture of PA (0.5 mM) and C3G (12.5 µM, 25 µM, 50 µM) for different durations (12, 24, 48 h). We found that C3G could dose-dependently ameliorate beta cell secretory function and further alleviate cell apoptosis. Mechanistically, the primary role of the PKR-like ER kinase (PERK) endoplasmic reticulum (ER) stress pathway was detected by RNA sequencing, and the PERK-pathway-related protein expression, especially the pro-apoptotic marker C/EBP homologous protein (CHOP) expression, was significantly downregulated by C3G treatment. The critical role of CHOP in mediating the protective effect of C3G was further validated by small interfering RNA. Conclusively, C3G could ameliorate PA-induced pancreatic beta cell dysfunction targeting the CHOP-related ER stress pathway, which might be used as a nutritional intervention for the preservation of beta cell dysfunction in type 2 diabetes mellitus.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。