Cyanidin-3-O-Glucoside Ameliorates Palmitic-Acid-Induced Pancreatic Beta Cell Dysfunction by Modulating CHOP-Mediated Endoplasmic Reticulum Stress Pathways

花青素-3-O-葡萄糖苷通过调节 CHOP 介导的内质网应激通路改善棕榈酸诱导的胰腺 β 细胞功能障碍

阅读:6
作者:Yunan Chen, Xueyan Li, Lei Su, Qianrong Hu, Wenli Li, Jialin He, Lina Zhao

Abstract

Cyanidin-3-O-glucoside (C3G) is a natural colorant with anti-diabetic properties, while its underlying mechanisms remain far from clear. Here, we investigated the protective role of C3G on palmitic acid (PA)-induced pancreatic beta cell dysfunction and further decipher its possible molecular mechanisms. Both primary isolated mouse islets and the INS-1E cell were used, and treated with a mixture of PA (0.5 mM) and C3G (12.5 µM, 25 µM, 50 µM) for different durations (12, 24, 48 h). We found that C3G could dose-dependently ameliorate beta cell secretory function and further alleviate cell apoptosis. Mechanistically, the primary role of the PKR-like ER kinase (PERK) endoplasmic reticulum (ER) stress pathway was detected by RNA sequencing, and the PERK-pathway-related protein expression, especially the pro-apoptotic marker C/EBP homologous protein (CHOP) expression, was significantly downregulated by C3G treatment. The critical role of CHOP in mediating the protective effect of C3G was further validated by small interfering RNA. Conclusively, C3G could ameliorate PA-induced pancreatic beta cell dysfunction targeting the CHOP-related ER stress pathway, which might be used as a nutritional intervention for the preservation of beta cell dysfunction in type 2 diabetes mellitus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。