Deep Convolutional Neural Network for Dedicated Regions-of-Interest Based Multi-Parameter Quantitative Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Knee Joint

基于专用感兴趣区域的深度卷积神经网络膝关节多参数定量超短回波时间 (UTE) 磁共振成像

阅读:10
作者:Xing Lu, Yajun Ma, Eric Y Chang, Jiyo Athertya, Hyungseok Jang, Saeed Jerban, Dana C Covey, Susan Bukata, Christine B Chung, Jiang Du

Abstract

We proposed an end-to-end deep learning convolutional neural network (DCNN) for region-of-interest based multi-parameter quantification (RMQ-Net) to accelerate quantitative ultrashort echo time (UTE) MRI of the knee joint with automatic multi-tissue segmentation and relaxometry mapping. The study involved UTE-based T1 (UTE-T1) and Adiabatic T1ρ (UTE-AdiabT1ρ) mapping of the knee joint of 65 human subjects, including 20 normal controls, 29 with doubtful-minimal osteoarthritis (OA), and 16 with moderate-severe OA. Comparison studies were performed on UTE-T1 and UTE-AdiabT1ρ measurements using 100%, 43%, 26%, and 18% UTE MRI data as the inputs and the effects on the prediction quality of the RMQ-Net. The RMQ-net was modified and retrained accordingly with different combinations of inputs. Both ROI-based and voxel-based Pearson correlation analyses were performed. High Pearson correlation coefficients were achieved between the RMQ-Net predicted UTE-T1 and UTE-AdiabT1ρ results and the ground truth for segmented cartilage with acceleration factors ranging from 2.3 to 5.7. With an acceleration factor of 5.7, the Pearson r-value achieved 0.908 (ROI-based) and 0.945 (voxel-based) for UTE-T1, and 0.733 (ROI-based) and 0.895 (voxel-based) for UTE-AdiabT1ρ, correspondingly. The results demonstrated that RMQ-net can significantly accelerate quantitative UTE imaging with automated segmentation of articular cartilage in the knee joint.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。