Background
Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Conclusions
MMF altered the expression of apoptosis- and autophagy-related proteins and possibly inhibited the Pink1/Parkin signaling pathway, which led to reduced pressurization-induced mitochondrial autophagy in RGCs. This preventive effect of MMF on RGCs can be potentially useful to preserve the viability of RGCs.
Methods
This study developed a pressurization-induced model of damaged RGCs, which were then treated with a serum supplemented with MMF. The effects of MMF on proliferation, apoptosis, adenosine 5'-triphosphate content, and mitochondrial structure of RGCs were investigated, and the underlying molecular mechanism was explored by RNA interference experiment.
Objective
Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Results
In the pressurization-induced RGC injury model, apoptosis rate increased, cell proliferation decreased, adenosine 5'-triphosphate content reduced, mitochondrial structure was disrupted, BCL2-associated X, cleaved caspase-3, and microtubule-associated proteins light chain 3 II/I protein expression enhanced, B cell lymphoma-2 and p62 protein expression decreased, and the Pink1/Parkin pathway was activated. The stress-induced damage to RGCs was, however, reversible following MMF-mediated inhibition of the Pink1/Parkin pathway. Pink1 short-hairpin RNA downregulated Pink1 expression in RGCs, which led to outcomes that aligned with those observed with MMF intervention. Conclusions: MMF altered the expression of apoptosis- and autophagy-related proteins and possibly inhibited the Pink1/Parkin signaling pathway, which led to reduced pressurization-induced mitochondrial autophagy in RGCs. This preventive effect of MMF on RGCs can be potentially useful to preserve the viability of RGCs.