Tryptophan scanning mutagenesis reveals distortions in the helical structure of the δM4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor

色氨酸扫描诱变揭示了加州鱼雷烟碱乙酰胆碱受体δM4跨膜结构域的螺旋结构的扭曲

阅读:2
作者:Daniel Caballero-Rivera, Omar A Cruz-Nieves, Jessica Oyola-Cintrón, David A Torres-Nunez, Jose D Otero-Cruz, José A Lasalde-Dominicci

Abstract

The lipid-protein interface is an important domain of the nicotinic acetylcholine receptor (nAChR) that has recently garnered increased relevance. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, there is still a need to gain insight into the mechanism by which lipid-protein interactions regulate the function and conformational transitions of the nAChR. In this study, we extended the tryptophan scanning mutagenesis (TrpScanM) approach to dissect secondary structure and monitor the conformational changes experienced by the δM4 transmembrane domain (TMD) of the Torpedo californica nAChR, and to identify which positions on this domain are potentially linked to the regulation of ion channel kinetics. The difference in oscillation patterns between the closed- and open-channel states suggests a substantial conformational change along this domain as a consequence of channel activation. Furthermore, TrpScanM revealed distortions along the helical structure of this TMD that are not present on current models of the nAChR. Our results show that a Thr-Pro motif at positions 462-463 markedly bends the helical structure of the TMD, consistent with the recent crystallographic structure of the GluCl Cys-loop receptor which reveals a highly bent TMD4 in each subunit. This Thr-Pro motif acts as a molecular hinge that delineates two gating blocks in the δM4 TMD. These results suggest a model in which a hinge-bending motion that tilts the helical structure is combined with a spring-like motion during transition between the closed- and open-channel states of the δM4 TMD.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。