In vivo melanin 3D quantification and z-epidermal distribution by multiphoton FLIM, phasor and Pseudo-FLIM analyses

通过多光子 FLIM、相量和伪 FLIM 分析进行体内黑色素 3D 量化和 z 表皮分布

阅读:9
作者:Ana-Maria Pena, Etienne Decencière, Sébastien Brizion, Peggy Sextius, Serge Koudoro, Thérèse Baldeweck, Emmanuelle Tancrède-Bohin

Abstract

Characterizing melanins in situ and determining their 3D z-epidermal distribution is paramount for understanding physiological/pathological processes of melanin neosynthesis, transfer, degradation or modulation with external UV exposure or cosmetic/pharmaceutical products. Multiphoton fluorescence intensity- and lifetime-based approaches have been shown to afford melanin detection, but how can one quantify melanin in vivo in 3D from multiphoton fluorescence lifetime (FLIM) data, especially since FLIM imaging requires long image acquisition times not compatible with 3D imaging in a clinical setup? We propose an approach combining (i) multiphoton FLIM, (ii) fast image acquisition times, and (iii) a melanin detection method called Pseudo-FLIM, based on slope analysis of autofluorescence intensity decays from temporally binned data. We compare Pseudo-FLIM to FLIM bi-exponential and phasor analyses of synthetic melanin, melanocytes/keratinocytes coculture and in vivo human skin. Using parameters of global 3D epidermal melanin density and z-epidermal distribution profile, we provide first insights into the in vivo knowledge of 3D melanin modulations with constitutive pigmentation versus ethnicity, with seasonality over 1 year and with topical application of retinoic acid or retinol on human skin. Applications of Pseudo-FLIM based melanin detection encompass physiological, pathological, or environmental factors-induced pigmentation modulations up to whitening, anti-photoaging, or photoprotection products evaluation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。