Glycine-Conjugated Bile Acids Protect RPE Tight Junctions against Oxidative Stress and Inhibit Choroidal Endothelial Cell Angiogenesis In Vitro

甘氨酸结合胆汁酸保护 RPE 紧密连接免受氧化应激并抑制脉络膜内皮细胞血管生成

阅读:18
作者:Cassandra Warden, Milam A Brantley Jr

Abstract

We previously demonstrated that the bile acid taurocholic acid (TCA) inhibits features of age-related macular degeneration (AMD) in vitro. The purpose of this study was to determine if the glycine-conjugated bile acids glycocholic acid (GCA), glycodeoxycholic acid (GDCA), and glycoursodeoxycholic acid (GUDCA) can protect retinal pigment epithelial (RPE) cells against oxidative damage and inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in choroidal endothelial cells (CECs). Paraquat was used to induce oxidative stress and disrupt tight junctions in HRPEpiC primary human RPE cells. Tight junctions were assessed via transepithelial electrical resistance and ZO-1 immunofluorescence. GCA and GUDCA protected RPE tight junctions against oxidative damage at concentrations of 100-500 µM, and GDCA protected tight junctions at 10-500 µM. Angiogenesis was induced with VEGF in RF/6A macaque CECs and evaluated with cell proliferation, cell migration, and tube formation assays. GCA inhibited VEGF-induced CEC migration at 50-500 µM and tube formation at 10-500 µM. GUDCA inhibited VEGF-induced CEC migration at 100-500 µM and tube formation at 50-500 µM. GDCA had no effect on VEGF-induced angiogenesis. None of the three bile acids significantly inhibited VEGF-induced CEC proliferation. These results suggest glycine-conjugated bile acids may be protective against both atrophic and neovascular AMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。