IONPs-induced neurotoxicity via cascade of neuro-oxidative stress, parthanatos-mediated cell death, neuro-inflammation and neurodegenerative changes: Ameliorating effect of rosemary methanolic extract

IONPs 通过神经氧化应激、parthanatos 介导的细胞死亡、神经炎症和神经退行性变化的级联而诱导的神经毒性:迷迭香甲醇提取物的改善作用

阅读:2
作者:Arwa A Elsheikh, Noha Ali Abd-Almotaleb, Mona Mostafa Ahmed, Eman El-Sayed Khayal

Abstract

Iron oxide nanoparticles (IONPs) are widely used in various fields, particularly in medicine, where they can be directly injected for diagnostic and therapeutic purposes, although they may induce certain types of toxicity. Therefore, the present work aimed to estimate the potential protective role of the oral extract of rosemary (RO)against the toxic effects of injected IONPs on the brain tissues of adult male rats, and to explore the potential underlying mechanisms involved in reversing such toxicity. Thirty adult male albino rats were allocated into five groups: the control, the vehicle (intravenous saline injection once/week), the RO extract group (orally gavaged100mg/kg/day), IONPs (intravenously injected 30 mg/kg once/week), and the combined RO+IONPs (orally gavaged RO extract 1 hrh before intravenous injection of IONPs). IONPs induced neurotoxicity via triggering a cascade of neuro-oxidative stress, neuro-inflammation, and parthanatos-mediated neuronal cell death by increasing MDA, NO, TNF-α levels, PARP-1, AIF, and NF-κB mRNA expression alongside reducing GSH levels. These incidents contributed to neurodegenerative changes, reflected in increased mRNA expression of α-S, β-APP, and TDP-43. Additionally, IONPs induced structural degenerative changes and elevated iron levels in brain tissues reduced occludin expression, and disrupted the BBB. Furthermore, the concurrent oral RO extract alleviated these conditions and repaired BBB by increasing the occludin expression and ameliorating structural changes in brain tissues. Consequently, the current data provide evidence that RO supplementation during IONP administration holds promise to minimize potential health risks, which should be corroborated by translational studies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。