Organizing pneumonia in mice and men

小鼠和人类的组织肺炎

阅读:2
作者:Nicole Izykowski, Mark Kuehnel, Kais Hussein, Kristin Mitschke, Michael Gunn, Sabina Janciauskiene, Axel Haverich, Gregor Warnecke, Florian Laenger, Ulrich Maus, Danny Jonigk

Background

Organizing pneumonia is a reaction pattern and an inflammatory response to acute lung injuries, and is characterized by intraluminal plugs of granulation tissue in distal airspaces. In contrast to other fibrotic pulmonary diseases, organizing pneumonia is generally responsive to corticosteroids. However, some patients do not respond to treatment, leading to respiratory failure and potentially death (up to 15 % of patients). In order to devise new therapeutic strategies, a better understanding of the disease's pathomechanisms is warranted. We previously generated a mouse model overexpressing CCL2, which generates organizing pneumonia-like changes, morphologically comparable to human patients. In this study, we investigated whether the histopathological similarities of human and murine pulmonary organizing pneumonia lesions also involve similar molecular pathways.

Conclusions

We suggest that the CCL2-overexpressing transgenic mouse model (CCL2 Tg mice) is suitable for further investigation of fibrotic pulmonary remodeling, particularly of organizing pneumonia pathogenesis and for the search for novel therapeutic strategies.

Methods

We analyzed the similarities and differences of fibrosis-associated gene expression in individual compartments from patients with organizing pneumonia and transgenic (CCL2) mice using laser-assisted microdissection, real-time PCR and immunohistochemistry.

Results

Gene expression profiling of human and murine organizing pneumonia lesions showed in part comparable expression levels of pivotal genes, notably of TGFB1/Tgfb1, TIMP1/Timp1, TIMP2/Timp2, COL3A1/Col3a1, CXCL12/Cxcl12, MMP2/Mmp2 and IL6/Il6. Hence, the transgenic CCL2 mouse model shows not only pathogenomic and morphological features of human organizing pneumonia but also a similar inflammatory profile. Conclusions: We suggest that the CCL2-overexpressing transgenic mouse model (CCL2 Tg mice) is suitable for further investigation of fibrotic pulmonary remodeling, particularly of organizing pneumonia pathogenesis and for the search for novel therapeutic strategies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。