The gene for cobalamin-independent methionine synthase is essential in Candida albicans: a potential antifungal target

不依赖钴胺素的蛋氨酸合酶基因在白色念珠菌中至关重要:一个潜在的抗真菌靶点

阅读:10
作者:Huda S Suliman, Dean R Appling, Jon D Robertus

Abstract

Methionine synthase catalyzes the transfer of a methyl group from tetrahydrofolate to homocysteine to produce methionine. Although mammalian enzymes are cobalamin-dependent, fungal methionine synthases are cobalamin-independent. The opportunistic pathogen Candida albicans is a diploid and carries two copies of the methionine synthase gene, MET6. Homologous recombination was used to disrupt a single MET6 gene. MET6/met6 knock-outs, deleted with either the URA3 or ARG4 cassette, grew as well as the wild-type strain. However, we were unable to obtain a viable met6/met6 deletion strain, even on media supplemented with exogenous methionine. This suggests that methionine synthase is essential to C. albicans. To explore this further, a C. albicans strain was constructed in which one MET6 locus was deleted and the second placed under a regulatable promoter. The conditional mutant grew well under inducing conditions, even in the absence of methionine. It would not grow under repressing conditions in the absence of methionine, but would grow when the media was supplemented with exogenous methionine. A Western blot showed that a small amount of enzyme was expressed under repressing conditions. Taken together, these data reveal that methionine is necessary for growth of C. albicans, but not sufficient-a minimal level of methionine synthase expression is required, perhaps to limit homocysteine toxicity. Furthermore, these results suggest that cobalamin-independent methionine synthase is a plausible target for the design of antifungal agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。