Computational cell type deconvolution on bulk transcriptomics data can reveal cell type proportion heterogeneity across samples. One critical factor for accurate deconvolution is the reference signature matrix for different cell types. Compared with inferring reference signature matrices from cell lines, rapidly accumulating single-cell RNA-sequencing (scRNA-seq) data provide a richer and less biased resource. However, deriving cell type signature from scRNA-seq data is challenging due to high biological and technical noises. In this article, we introduce a novel Bayesian framework, tranSig, to improve signature matrix inference from scRNA-seq by leveraging shared cell type-specific expression patterns across different tissues and studies. Our simulations show that tranSig is robust to the number of signature genes and tissues specified in the model. Applications of tranSig to bulk RNA sequencing data from peripheral blood, bronchoalveolar lavage and aorta demonstrate its accuracy and power to characterize biological heterogeneity across groups. In summary, tranSig offers an accurate and robust approach to defining gene expression signatures of different cell types, facilitating improved in silico cell type deconvolutions.
A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy.
一种用于协调不同组织和研究信息以提高细胞类型反卷积准确性的新型贝叶斯框架
阅读:4
作者:Deng Wenxuan, Li Bolun, Wang Jiawei, Jiang Wei, Yan Xiting, Li Ningshan, Vukmirovic Milica, Kaminski Naftali, Wang Jing, Zhao Hongyu
| 期刊: | Briefings in Bioinformatics | 影响因子: | 7.700 |
| 时间: | 2023 | 起止号: | 2023 Jan 19; 24(1):bbac616 |
| doi: | 10.1093/bib/bbac616 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
