The reactivity of apurinic/apyrimidinic (AP) sites at different locations within nucleosome core particles was examined. AP sites are greatly destabilized in nucleosome core particles compared to free DNA. Their reactivity varied ~5-fold with respect to the location within the nucleosome core particles but followed a common mechanism involving formation of a Schiff base between histone proteins and the lesion. The identity of the histone protein(s) involved in the reaction and the reactivity of the corresponding DNA-protein cross-links varied with the location of the abasic site, indicating that while the relative rate constants for individual steps varied in a complex manner, the overall mechanism remained the same. The source of the accelerated reactivity was probed using nucleosomes containing AP89 and histone H3 and H4 variants. Mutating the five lysine residues in the amino tail region of histone H4 to arginines reduced the rate constant for disappearance almost 15-fold. Replacing histidine 18 with an alanine reduced AP reactivity more than 3-fold. AP89 in a nucleosome core particle composed of the H4 variant containing both sets of mutations reacted only <4-fold faster than it did in naked DNA. These experiments reveal that nucleosome-catalyzed reaction at AP89 is a general phenomenon and that the lysine rich histone tails, whose modification is integrally involved in epigenetics, are primarily responsible for this chemistry.
Nucleosome core particle-catalyzed strand scission at abasic sites.
核小体核心颗粒催化无碱基位点的链断裂
阅读:6
作者:Sczepanski Jonathan T, Zhou Chuanzheng, Greenberg Marc M
| 期刊: | Biochemistry | 影响因子: | 3.000 |
| 时间: | 2013 | 起止号: | 2013 Mar 26; 52(12):2157-64 |
| doi: | 10.1021/bi3010076 | 研究方向: | 信号转导 |
| 信号通路: | 炎性小体 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
