Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis.

SH3结构域蛋白在拟南芥网格蛋白介导的囊泡运输中的作用

阅读:10
作者:Lam B C, Sage T L, Bianchi F, Blumwald E
A group of plant AtSH3Ps (Arabidopsis thaliana SH3-containing proteins) involved in trafficking of clathrin-coated vesicles was identified from the GenBank database. These proteins contained predicted coiled-coil and Src homology 3 (SH3) domains that are similar to animal and yeast proteins involved in the formation, fission, and uncoating of clathrin-coated vesicles. Subcellular fractionation and immunolocalization studies confirmed the presence of AtSH3P1 in the endomembrane system. In particular, AtSH3P1 was localized on or adjacent to the plasma membrane and its associated vesicles, vesicles of the trans-Golgi network, and the partially coated reticulum. At all of these locations, AtSH3P1 colocalized with clathrin. Functionally, in vitro lipid binding assay demonstrated that AtSH3P1 bound to specific lipid groups known to accumulate at invaginated coated pits or coated vesicles. In addition, immunohistochemical studies and actin binding assays indicated that AtSH3P1 also may regulate vesicle trafficking along the actin cytoskeleton. Yeast complementation studies suggested that AtSH3Ps have similar functions to the yeast Rvs167p protein involved in endocytosis and actin arrangement. A novel interaction between AtSH3P1 and an auxilin-like protein was identified by yeast two-hybrid screening, immunolocalization, and an in vitro binding assay. The interaction was mediated through the SH3 domain of AtSH3P1 and a proline-rich domain of auxilin. The auxilin-like protein stimulated the uncoating of clathrin-coated vesicles by Hsc70, a reaction that appeared to be inhibited in the presence of AtSH3P1. Hence, AtSH3P1 may perform regulatory and/or scaffolding roles during the transition of fission and the uncoating of clathrin-coated vesicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。