Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disorder characterized by motoneuron death. Clinical and experimental studies in animal models of ALS have found gender differences in the incidence and onset of disease, suggesting that female hormones may play a beneficial role. Cumulative evidence indicates that 17β-estradiol (17βE2) has a neuroprotective role in the central nervous system. We have previously developed a new culture system by using rat spinal cord embryonic explants in which motoneurons have the singularity of migrating outside the spinal cord, growing as a monolayer in the presence of glial cells. In this study, we have validated this new culture system as a useful model for studying neuroprotection by estrogens on spinal cord motoneurons. We show for the first time that spinal cord motoneurons express classical estrogen receptors and that 17βE2 activates, specifically in these cells, the Akt anti-apoptotic signaling pathway and two of their downstream effectors: GSK-3β and Bcl-2. To further validate our system, we demonstrated neuroprotective effects of 17βE2 on spinal cord motoneurons when exposed to the proinflammatory cytokines TNF-α and IFN-γ. These effects of 17βE2 were fully reverted in the presence of the estrogen receptor antagonist ICI 182,780. Our new culture model and the results presented here may provide the basis for further studies on the effects of estrogens, and selective estrogen receptor modulators, on spinal cord motoneurons in the context of ALS or other motoneuron diseases.
Neuroprotective effects of estradiol on motoneurons in a model of rat spinal cord embryonic explants.
雌二醇对大鼠脊髓胚胎外植体模型运动神经元的神经保护作用
阅读:3
作者:Cardona-Rossinyol Andrea, Mir Margalida, Caraballo-Miralles VÃctor, Lladó Jerònia, Olmos Gabriel
| 期刊: | Cellular and Molecular Neurobiology | 影响因子: | 4.800 |
| 时间: | 2013 | 起止号: | 2013 Apr;33(3):421-32 |
| doi: | 10.1007/s10571-013-9908-9 | 种属: | Rat |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
