Background: The periosteum plays an indispensable role in bone repair, and promoting osteogenic differentiation of periosteum-derived stem cells (PDSCs) is one of the most effective strategies for enhancing spontaneous bone regeneration in maxillofacial bone defects. Methods: We established a rat model of mandibular defects with preserved periosteum to explore its bone regeneration capacity and the potential mechanisms of PDSC activation and osteogenic differentiation. Results: Significant bone regeneration was observed in rats with preserved periosteum after mandibular defects. To explore the underlying mechanisms, PDSCs were isolated from the periosteum of rat mandibles, and the stem cell markers CD90 and CD44 was highly expressed in these PDSCs. Further, RNA-seq, RT-qPCR, and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses revealed significantly reduced expression of the Dot1l gene, and the Notch pathway was significantly enriched in the PDSCs of the model group. Osteogenic assays demonstrated that the overexpression of Dot1l significantly inhibited the alkaline phosphatase (ALP) activity, calcium deposition, and the expression of osteogenic-related genes (such as RUNX2, OSX, ALP, and OCN) in PDSCs. Additionally, Dot1l significantly affects the Notch signaling pathway in the Gene Ontology (GO) pathways, and significantly downregulates the expression of Chac1 within it. Further, Dot1l inhibited ALP activity, calcium deposition, and the expression of osteogenic-related genes in PDSCs by downregulating Chac1 expression. Conclusions: Our study suggests that mandibular defects can induce the activation of PDSCs and inhibit the expression of Dot1l, potentially affecting the Notch signaling pathway. Targeting the Dot1l/Chac1 pathway to regulate the osteogenic differentiation of PDSCs lays a solid foundation for periosteum-based maxillofacial bone regeneration.
Dot1l Regulates the Spontaneous Bone Regeneration of Periosteum-Derived Stem Cells by Regulating Chac1 Expression.
Dot1l 通过调节 Chac1 表达来调节骨膜来源干细胞的自发性骨再生
阅读:6
作者:Jiang Taoran, Fang Bin, Yu Zheyuan, Cao Dejun
| 期刊: | Stem Cells International | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Jul 9; 2025:1508850 |
| doi: | 10.1155/sci/1508850 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
