CBASS is a common anti-phage immune system that uses cyclic oligonucleotide signals to activate effectors and limit phage replication. In turn, phages encode anti-CBASS (Acb) proteins. We recently uncovered a widespread phage anti-CBASS protein Acb2 that acts as a "sponge" by forming a hexamer complex with three cGAMP molecules. Here, we identified that Acb2 binds and sequesters many CBASS and cGAS-produced cyclic dinucleotides in vitro and inhibits cGAMP-mediated STING activity in human cells. Surprisingly, Acb2 also binds CBASS cyclic trinucleotides 3'3'3'-cyclic AMP-AMP-AMP (cA(3)) and 3'3'3'-cAAG with high affinity. Structural characterization identified a distinct binding pocket within the Acb2 hexamer that binds two cyclic trinucleotide molecules and another binding pocket that binds to cyclic dinucleotides. Binding in one pocket does not allosterically alter the other, such that one Acb2 hexamer can simultaneously bind two cyclic trinucleotides and three cyclic dinucleotides. Phage-encoded Acb2 provides protection from Type III-C CBASS that uses cA(3) signaling molecules in vivo and blocks cA(3)-mediated activation of the endonuclease effector in vitro. Altogether, Acb2 sequesters nearly all known CBASS signaling molecules through two distinct binding pockets and therefore serves as a broad-spectrum inhibitor of cGAS-based immunity.
Phage anti-CBASS protein simultaneously sequesters cyclic trinucleotides and dinucleotides.
噬菌体抗CBASS蛋白可同时隔离环状三核苷酸和二核苷酸
阅读:7
作者:Cao Xueli, Xiao Yu, Huiting Erin, Cao Xujun, Li Dong, Ren Jie, Guan Linlin, Wang Yu, Li Lingyin, Bondy-Denomy Joseph, Feng Yue
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2023 Jun 1 |
| doi: | 10.1101/2023.06.01.543220 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
