Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle.

心肌激活过程中肌钙蛋白结构发生钙依赖性和肌球蛋白依赖性变化

阅读:3
作者:Sun Yin-Biao, Lou Fang, Irving Malcolm
Each heartbeat is triggered by a pulse of intracellular calcium ions which bind to troponin on the actin-containing thin filaments of heart muscle cells, initiating a change in filament structure that allows myosin to bind and generate force. We investigated the molecular mechanism of calcium regulation in demembranated trabeculae from rat ventricle using polarized fluorescence from probes on troponin C (TnC). Native TnC was replaced by double-cysteine mutants of human cardiac TnC with bifunctional rhodamine attached along either the C helix, adjacent to the regulatory Ca(2+)-binding site, or the E helix in the IT arm of the troponin complex. Changes in the orientation of both troponin helices had the same steep Ca(2+) dependence as active force production, with a Hill coefficient (n(H)) close to 3, consistent with a single co-operative transition controlled by Ca(2+) binding. Complete inhibition of active force by 25 microM blebbistatin had very little effect on the Ca(2+)-dependent structural changes and in particular did not significantly reduce the value of n(H). Binding of rigor myosin heads to thin filaments following MgATP depletion in the absence of Ca(2+) also changed the orientation of the C and E helices, and addition of Ca(2+) in rigor produced further changes characterized by increased Ca(2+) affinity but with n(H) close to 1. These results show that, although myosin binding can switch on thin filaments in rigor conditions, it does not contribute significantly under physiological conditions. The physiological mechanism of co-operative Ca(2+) regulation of cardiac contractility must therefore be intrinsic to the thin filaments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。