Ectodermal organs such as teeth, hair follicles, and mammary glands begin their development as placodes. These are local epithelial thickenings that invaginate into mesenchymal space. There is currently little mechanistic understanding of the cellular processes driving the early morphogenesis of these organs and of why they lead to invagination rather than simple tissue thickening. Here, we show that placode invagination depends on horizontal contraction of superficial layers of cells that form a shrinking and thickening canopy over underlying epithelial cells. This contraction occurs by cell intercalation and is mechanically coupled to the basal layer by peripheral basal cells that extend apically and centripetally while remaining attached to the basal lamina. This process is topologically analogous to well-studied apical constriction mechanisms, but very different from them both in scale and molecular mechanism. Mechanical cell-cell coupling is propagated through the tissue via E-cadherin junctions, which in turn depend on tissue-wide tension. We further present evidence that this mechanism is conserved among different ectodermal organs and is, therefore, a novel and fundamental morphogenetic motif widespread in embryonic development.
Invagination of Ectodermal Placodes Is Driven by Cell Intercalation-Mediated Contraction of the Suprabasal Tissue Canopy.
外胚层基板的内陷是由细胞插入介导的基底上组织盖收缩驱动的
阅读:4
作者:Panousopoulou Eleni, Green Jeremy B A
| 期刊: | PLoS Biology | 影响因子: | 7.200 |
| 时间: | 2016 | 起止号: | 2016 Mar 9; 14(3):e1002405 |
| doi: | 10.1371/journal.pbio.1002405 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
