Behavioral reactions of animals to environmental sensory stimuli are sometimes reflexive and stereotyped but can also vary depending on contextual conditions. Engaging in active foraging or flight provokes a reversal in the valence of carbon dioxide responses from aversion to approach in Drosophila [1, 2], whereas mosquitoes encountering this same chemical cue show enhanced approach toward a small visual object [3]. Sensory plasticity in insects has been broadly attributed to the action of biogenic amines, which modulate behaviors such as olfactory learning, aggression, feeding, and egg laying [4-14]. Octopamine acts rapidly upon the onset of flight to modulate the response gain of directionally selective motion-detecting neurons in Drosophila [15]. How the action of biogenic amines might couple sensory modalities to each other or to locomotive states remains poorly understood. Here, we use a visual flight simulator [16] equipped for odor delivery [17] to confirm that flies avoid a small contrasting visual object in odorless air [18] but that the same animals reverse their preference to approach in the presence of attractive food odor. An aversive odor does not reverse object aversion. Optogenetic activation of either octopaminergic neurons or directionally selective motion-detecting neurons that express octopamine receptors elicits visual valence reversal in the absence of odor. Our results suggest a parsimonious model in which odor-activated octopamine release excites the motion detection pathway to increase the saliency of either a small object or a bar, eliciting tracking responses by both visual features.
Olfactory and Neuromodulatory Signals Reverse Visual Object Avoidance to Approach in Drosophila.
嗅觉和神经调节信号逆转果蝇的视觉物体回避行为,使其转向接近行为
阅读:6
作者:Cheng Karen Y, Colbath Rachel A, Frye Mark A
| 期刊: | Current Biology | 影响因子: | 7.500 |
| 时间: | 2019 | 起止号: | 2019 Jun 17; 29(12):2058-2065 |
| doi: | 10.1016/j.cub.2019.05.010 | 种属: | Drosophila |
| 研究方向: | 信号转导、神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
