A response to iron involving carbon metabolism in the opportunistic fungal pathogen Candida albicans.

机会性真菌病原体白色念珠菌对铁的反应涉及碳代谢

阅读:4
作者:Garg Ritu, Zhu Zhengkai, Hernandez Francisco G, Wang Yiran, David Marika S, Bruno Vincent M, Culotta Valeria C
Iron (Fe) is an essential micronutrient, and during infection, the host attempts to starve pathogens of this vital element through a process known as nutritional immunity. Successful pathogens have evolved means to evade this attack, an example being Candida albicans, the most prevalent human fungal pathogen. When Fe-starved, C. albicans induces multiple pathways for Fe uptake using the SEF1 trans-regulator, and we now describe a previously unrecognized effect of Fe on C. albicans metabolism that occurs independent of SEF1. Specifically, Fe limitation leads to inhibition of pyruvate dehydrogenase (PDH) connecting glycolysis to mitochondrial respiration. PDH inactivation involves loss of the LAT1 catalytic subunit harboring a lipoic acid co-factor. Protein lipoylation is a Fe-S dependent process, and lipoylated alpha-ketoglutarate dehydrogenase is also inhibited in Fe-starved C. albicans. SEF1 does not protect against PDH inactivation, and despite SEF1 induction of Fe import genes, cellular Fe levels drop dramatically during chronic Fe starvation. Such loss of LAT1 and lipoylation is also seen in Fe-starved bakers' yeast Saccharomyces cerevisiae. In both yeast species, glucose is diverted toward the pentose phosphate pathway (PPP) and PPP production of NADPH is increased in response to low Fe and PDH loss. Additionally, glucose consumption is lowered in Fe-starved C. albicans, and non-PDH alternatives to producing Ac-CoA are induced, including pyruvate bypass and fatty acid oxidation pathways. C. albicans can adapt well to the effects of micronutrient loss on cell metabolism. IMPORTANCE: We describe a new response to Fe-starvation in a fungal pathogen involving carbon metabolism. Pyruvate dehydrogenase (PDH) that is central to glucose metabolism is inactivated at the post-translational level in Fe-starved cells. Nevertheless, the fungal pathogen can thrive by activating backup systems for metabolizing glucose. Methods that inhibit these compensatory pathways for carbon metabolism may prove beneficial in future anti-fungal strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。