Asymmetric cell division (ACD) is a broadly used mechanism for generating cellular diversity. Molecules known as fate determinants are segregated during ACD to generate distinct sibling cell fates, but determinants should not be activated until fate can be specified asymmetrically. Determinants could be activated after cell division but many animal cells complete division long after mitosis ends, raising the question of how activation could occur at mitotic exit taking advantage of the unique state plasticity at this time point. Here we show that the midbody, a microtubule-rich structure that forms in the intercellular bridge connecting nascent siblings, mediates fate determinant activation at mitotic exit in neural stem cells (NSCs) of the Drosophila larval brain. The fate determinants Prospero (Pros) and Brain tumor (Brat) are sequestered at the NSC membrane at metaphase but are released immediately following nuclear division when the midbody forms, well before cell division completes. The midbody isolates nascent sibling cytoplasms, allowing determinant release from the membrane via the cell cycle phosphatase String, without influencing the fate of the incorrect sibling. Our results identify the midbody as a key facilitator of ACD that allows asymmetric fate determinant activation to be initiated before division.
The cytokinetic midbody mediates asymmetric fate specification at mitotic exit during neural stem cell division.
细胞分裂中体介导神经干细胞分裂过程中有丝分裂结束时的不对称命运决定
阅读:3
作者:LaFoya Bryce, Penkert Rhiannon R, Prehoda Kenneth E
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Aug 28 |
| doi: | 10.1101/2024.08.27.609974 | 研究方向: | 发育与干细胞、神经科学、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
