Adaptation in bacterial flagellar and motility systems: from regulon members to 'foraging'-like behavior in E. coli.

细菌鞭毛和运动系统的适应性:从调节子成员到大肠杆菌的“觅食”样行为

阅读:4
作者:Zhao Kai, Liu Mingzhu, Burgess Richard R
Bacterial flagellar motility and chemotaxis help cells to reach the most favorable environments and to successfully compete with other micro-organisms in response to external stimuli. Escherichia coli is a motile gram-negative bacterium, and the flagellar regulon in E. coli is controlled by a master regulator FlhDC as well as a second regulator, flagellum-specific sigma factor, sigma(F). To define the physiological role of these two regulators, we carried out transcription profiling experiments to identify, on a genome-wide basis, genes under the control of these two regulators. In addition, the synchronized pattern of increasing CRP activity causing increasing FlhDC expression with decreasing carbon source quality, together with the apparent coupling of motility activity with the activation of motility and chemotaxis genes in poor quality carbon sources, highlights the importance of CRP activation in allowing E. coli to devote progressively more of its limited reserves to search out better conditions. In adaptation to a variety of carbon sources, the motile bacteria carry out tactical responses by increasing flagellar operation but restricting costly flagellar synthesis, indicating its capability of strategically using the precious energy in nutrient-poor environments for maximizing survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。