Plant bioengineering is a time-consuming and labor-intensive process with no guarantee of achieving desired traits. Here, we present a fast, automated, scalable, high-throughput pipeline for plant bioengineering (FAST-PB) in maize (Zea mays) and Nicotiana benthamiana. FAST-PB enables genome editing and product characterization by integrating automated biofoundry engineering of callus and protoplast cells with single-cell matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We first demonstrated that FAST-PB could streamline Golden Gate cloning, with the capacity to construct 96 vectors in parallel. Using FAST-PB in protoplasts, we found that PEG2050 increased transfection efficiency by over 45%. For proof-of-concept, we established a reporter-gene-free method for CRISPR editing and phenotyping via mutation of high chlorophyll fluorescence 136. We show that diverse lipids were enhanced up to 6-fold using CRISPR activation of lipid controlling genes. In callus cells, an automated transformation platform was employed to regenerate plants with enhanced lipid traits through introducing multigene cassettes. Lastly, FAST-PB enabled high-throughput single-cell lipid profiling by integrating MALDI-MS with the biofoundry, protoplast, and callus cells, differentiating engineered and unengineered cells using single-cell lipidomics. These innovations massively increase the throughput of synthetic biology, genome editing, and metabolic engineering and change what is possible using single-cell metabolomics in plants.
Enhancing lipid production in plant cells through automated high-throughput genome engineering and phenotyping.
通过自动化高通量基因组工程和表型分析提高植物细胞的脂质产量
阅读:6
作者:Dong Jia, Croslow Seth W, Lane Stephan T, Castro Daniel C, Blanford Jantana, Zhou Shuaizhen, Park Kiyoul, Burgess Steven, Root Mike, Cahoon Edgar B, Shanklin John, Sweedler Jonathan V, Zhao Huimin, Hudson Matthew E
| 期刊: | Plant Cell | 影响因子: | 11.600 |
| 时间: | 2025 | 起止号: | 2025 Feb 13; 37(2):koaf026 |
| doi: | 10.1093/plcell/koaf026 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
