Epidemics caused by microbial organisms are part of the natural phenomena of increasing biological complexity. The heterogeneity and constant variability of hosts, in terms of age, immunological status, family structure, lifestyle, work activities, social and leisure habits, daily division of time and other demographic characteristics make it extremely difficult to predict the evolution of epidemics. Such prediction is, however, critical for implementing intervention measures in due time and with appropriate intensity. General conclusions should be precluded, given that local parameters dominate the flow of local epidemics. Membrane computing models allows us to reproduce the objects (viruses and hosts) and their interactions (stochastic but also with defined probabilities) with an unprecedented level of detail. Our LOIMOS model helps reproduce the demographics and social aspects of a hypothetical town of 10 320 inhabitants in an average European country where COVID-19 is imported from the outside. The above-mentioned characteristics of hosts and their lifestyle are minutely considered. For the data in the Hospital and the ICU we took advantage of the observations at the Nursery Intensive Care Unit of the Consortium University General Hospital, Valencia, Spain (included as author). The dynamics of the epidemics are reproduced and include the effects on viral transmission of innate and acquired immunity at various ages. The model predicts the consequences of delaying the adoption of non-pharmaceutical interventions (between 15 and 45 days after the first reported cases) and the effect of those interventions on infection and mortality rates (reducing transmission by 20, 50 and 80%) in immunological response groups. The lockdown for the elderly population as a single intervention appears to be effective. This modeling exercise exemplifies the application of membrane computing for designing appropriate multilateral interventions in epidemic situations.
Simulating the impact of non-pharmaceutical interventions limiting transmission in COVID-19 epidemics using a membrane computing model.
利用膜计算模型模拟非药物干预措施限制 COVID-19 疫情传播的影响
阅读:6
作者:Campos M, Sempere J M, Galán J C, Moya A, Llorens C, de-Los-Angeles C, Baquero-Artigao F, Cantón R, Baquero F
| 期刊: | microLife | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 Sep 9; 2:uqab011 |
| doi: | 10.1093/femsml/uqab011 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
