Current treatments for retinal degenerative diseases are limited and cell replacement therapies, in tandem with a supportive biomaterial scaffold, serve as a promising emerging option. However, the development and in vitro testing of these therapies require large quantities of human retinal progenitor cells (RPCs) to thoroughly assess the impact of material properties, culture conditions, and surgical parameters on cell survival and fate to refine and optimize this approach. Although induced pluripotent stem cells (iPSCs) are an ideal cell source for human RPC derivation, large-scale production is resource-intensive and requires specialized expertise. In this study, our objective was to address this barrier by creating conditional, Tet-On SV40-T immortalized RPCs derived from human iPSCs. In our approach, we employ the Tet-On system to conditionally immortalize RPCs by inducing a SV40 large T (SV40-T) antigen, a gene known to influence cell cycle regulation and differentiation. We transduced human iPSCs with the Tet-On SV40-T system and analyzed their proliferation and RPC differentiation capabilities in the presence and absence of doxycycline (a tetracycline class of antibiotics). Our results revealed that while SV40-T immortalization increased cell proliferation, it adversely impacted the expression of crucial RPC markers (PAX6, SOX2, CHX10), leading to a significant loss of RPC identity and multipotency. This de-differentiation was irreversible, even after removing doxycycline, indicating permanent alterations in differentiation potential. Overall, this study highlights the challenges associated with generating and maintaining an immortal human RPC cell line, particularly with respect to balancing proliferation and differentiation. Our findings prompt further research into optimizing conditional immortalization techniques, culture conditions, and proliferation timing to maintain the integrity and functional characteristics of RPCs. Such advancements are crucial for reducing labor and costs associated with in vitro testing of therapeutics as we work toward the development of improved stem cell-based interventions for retinal disease.
Conditional Immortalization Using SV40 Large T Antigen and Its Effects on Induced Pluripotent Stem Cell Differentiation Toward Retinal Progenitor Cells.
利用 SV40 大 T 抗原进行条件永生化及其对诱导多能干细胞向视网膜祖细胞分化的影响
阅读:7
作者:Wang Qi, Allen Brittany N, Bohrer Laura R, Burnight Erin R, Tucker Budd A, Worthington Kristan S
| 期刊: | Stem Cells and Development | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Jan;34(1-2):26-34 |
| doi: | 10.1089/scd.2024.0124 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
