BACKGROUND: The bacteraemia prediction is relevant because sepsis is one of the most important causes of morbidity and mortality. Bacteraemia prognosis primarily depends on a rapid diagnosis. The bacteraemia prediction would shorten up to 6 days the diagnosis, and, in conjunction with individual patient variables, should be considered to start the early administration of personalised antibiotic treatment and medical services, the election of specific diagnostic techniques and the determination of additional treatments, such as surgery, that would prevent subsequent complications. Machine learning techniques could help physicians make these informed decisions by predicting bacteraemia using the data already available in electronic hospital records. OBJECTIVE: This study presents the application of machine learning techniques to these records to predict the blood culture's outcome, which would reduce the lag in starting a personalised antibiotic treatment and the medical costs associated with erroneous treatments due to conservative assumptions about blood culture outcomes. METHODS: Six supervised classifiers were created using three machine learning techniques, Support Vector Machine, Random Forest and K-Nearest Neighbours, on the electronic health records of hospital patients. The best approach to handle missing data was chosen and, for each machine learning technique, two classification models were created: the first uses the features known at the time of blood extraction, whereas the second uses four extra features revealed during the blood culture. RESULTS: The six classifiers were trained and tested using a dataset of 4357 patients with 117 features per patient. The models obtain predictions that, for the best case, are up to a state-of-the-art accuracy of 85.9%, a sensitivity of 87.4% and an AUC of 0.93. CONCLUSIONS: Our results provide cutting-edge metrics of interest in predictive medical models with values that exceed the medical practice threshold and previous results in the literature using classical modelling techniques in specific types of bacteraemia. Additionally, the consistency of results is reasserted because the three classifiers' importance ranking shows similar features that coincide with those that physicians use in their manual heuristics. Therefore, the efficacy of these machine learning techniques confirms their viability to assist in the aims of predictive and personalised medicine once the disease presents bacteraemia-compatible symptoms and to assist in improving the healthcare economy.
Diagnosing hospital bacteraemia in the framework of predictive, preventive and personalised medicine using electronic health records and machine learning classifiers.
在预测性、预防性和个性化医疗的框架下,利用电子健康记录和机器学习分类器诊断医院菌血症
阅读:7
作者:Garnica Oscar, Gómez Diego, Ramos VÃctor, Hidalgo J Ignacio, Ruiz-GiardÃn José M
| 期刊: | Epma Journal | 影响因子: | 5.900 |
| 时间: | 2021 | 起止号: | 2021 Aug 31; 12(3):365-381 |
| doi: | 10.1007/s13167-021-00252-3 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
