Detecting patients at high relapse risk after the first episode of psychosis (HRR-FEP) could help the clinician adjust the preventive treatment. To develop a tool to detect patients at HRR using their baseline clinical and structural MRI, we followed 227 patients with FEP for 18-24 months and applied MRIPredict. We previously optimized the MRI-based machine-learning parameters (combining unmodulated and modulated gray and white matter and using voxel-based ensemble) in two independent datasets. Patients estimated to be at HRR-FEP showed a substantially increased risk of relapse (hazard ratioâ=â4.58, Pâ<â0.05). Accuracy was poorer when we only used clinical or MRI data. We thus show the potential of combining clinical and MRI data to detect which individuals are more likely to relapse, who may benefit from increased frequency of visits, and which are unlikely, who may be currently receiving unnecessary prophylactic treatments. We also provide an updated version of the MRIPredict software.
Combining MRI and clinical data to detect high relapse risk after the first episode of psychosis.
结合 MRI 和临床数据来检测首次精神病发作后的高复发风险
阅读:4
作者:Solanes Aleix, Mezquida Gisela, Janssen Joost, Amoretti Silvia, Lobo Antonio, González-Pinto Ana, Arango Celso, Vieta Eduard, Castro-Fornieles Josefina, Bergé Daniel, Albacete Auria, Giné Eloi, Parellada Mara, Bernardo Miguel, Pomarol-Clotet Edith, Radua Joaquim
| 期刊: | npj Schizophrenia | 影响因子: | 4.100 |
| 时间: | 2022 | 起止号: | 2022 Nov 17; 8(1):100 |
| doi: | 10.1038/s41537-022-00309-w | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
