Integrin-linked kinase (ILK) is a key scaffolding protein between extracellular matrix protein and the cytoskeleton and has been implicated previously in the pathogenesis of renal damage. However, its involvement in renal mitochondrial dysfunction remains to be elucidated. We studied the role of ILK and its downstream regulations in renal damage and mitochondria function both in vivo and vitro, using a folic acid (FA)-induced kidney disease model. Wild type (WT) and ILK conditional-knockdown (cKD-ILK) mice were injected with a single intraperitoneal dose of FA and studied after 15 days of chronic renal damage progression. Human Kidney tubular epithelial cells (HK2) were transfected with specific siRNAs targeting ILK, glycogen synthase kinase 3-β (GSK3β), or CCAAT/enhancer binding protein-β (C/EBPβ). The expressions and activities of renal ILK, GSK3β, C/EBPβ, mitochondrial oxidative phosphorylation enzymes, and mitochondrial membrane potential were assessed. Additionally, the expression of markers for fibrosis fibronectin (FN) and collagen 1 (COL1A1), for autophagy p62 and cytosolic light chain 3 (LC3B) isoforms II and I, and mitochondrial homeostasis marker carnitine palmitoyl-transferase 1A (CPT1A) were evaluated using immunoblotting, RT-qPCR, immunofluorescence, or colorimetric assays. FA upregulated ILK expression, leading to the decrease of GSK3β activity, increased tubular fibrosis, and produced mitochondrial dysfunction, both in vivo and vitro. These alterations were fully or partially reversed upon ILK depletion, mitigating FA-induced renal damage. The signaling axis composed by ILK, GSK3β, and C/EBPβ regulated CPT1A transcription as the limiting factor in the FA-based impaired mitochondrial activity. We highlight ILK as a potential therapeutical target for preserving mitochondrial function in kidney injury.
Integrin-Linked Kinase (ILK) Promotes Mitochondrial Dysfunction by Decreasing CPT1A Expression in a Folic Acid-Based Model of Kidney Disease.
整合素连接激酶 (ILK) 通过降低 CPT1A 表达促进叶酸诱导的肾脏疾病模型中的线粒体功能障碍
阅读:3
作者:de la Serna-Soto Mariano, Calleros Laura, Martos-Elvira MarÃa, Moreno-Piedra Ariadna, GarcÃa-Villoria Sergio, Griera Mercedes, Alcalde-Estévez Elena, Asenjo-Bueno Ana, RodrÃguez-Puyol Diego, de Frutos Sergio, Ruiz-Torres MarÃa Piedad
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 21; 26(5):1861 |
| doi: | 10.3390/ijms26051861 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
