To gain insight into biological mechanisms that cause resistance to DNA damage, we performed parallel pooled genetic CRISPR-Cas9 screening for survival in high risk HNSCC subtypes. Surprisingly, and in addition to ATM, DNAPK, and NFKB signaling, JAK1 was identified as a driver of tumor cell radiosensitivity. Knockout of JAK1 in HNSCC increases cell survival by enhancing the DNA damage-induced G2 arrest, and both knockout and JAK1 inhibition with abrocitinib prevent subsequent formation of radiation-induced micronuclei. Loss of JAK1 function does not affect canonical CDK1 signaling but does reduce activation of PLK1 and AURKA, kinases that regulate both G2 and M phase progression. Correspondingly, JAK1 KO was found to cause mitotic defects using both EdU labeling and live cell imaging techniques. Given this insight, we evaluated Kif18a inhibition as an approach to exacerbate mitotic stress and enhance the efficacy of radiation. These studies establish Kif18a inhibition as a novel strategy to counteract therapeutic resistance to DNA damage mediated by G2 cell cycle arrest.
Loss of JAK1 Function Causes G2/M Cell Cycle Defects Vulnerable to Kif18a Inhibition.
JAK1 功能丧失导致 G2/M 细胞周期缺陷,易受 Kif18a 抑制
阅读:4
作者:Kelley Vanessa, Baro Marta, Gasperi William, Ader Nicholas, Lea Hannah, Lee Hojin, Phoomak Chatchai, Kabeche Lilian, King Megan, Contessa Joseph
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 24 |
| doi: | 10.1101/2025.02.19.638911 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
