Repeated Low-Level Inflammatory Challenge Leads to Alterations in the TNF-CXCL10 Signalling Pathway in Mouse Cerebral Endothelial Cells In Vitro.

反复低水平炎症刺激可导致小鼠脑内皮细胞中 TNF-CXCL10 信号通路发生改变(体外实验)

阅读:10
作者:Ritson Megan, Xia Dong, Wheeler-Jones Caroline, Stolp Helen B
The mechanism by which chronic systemic inflammation contributes to cerebral endothelial dysfunction and neurological disorders is unclear, although endothelial inflammatory signalling is considered a cornerstone of this process. Here, we have performed transcriptomic analysis of published RNASeq datasets and identified consistent upregulation of the Tumour Necrosis Factor-C-X-C Motif Chemokine Ligand 10 (TNF-CXCL10) signalling pathway in mouse cerebral endothelial cells following a single inflammatory challenge. We subsequently investigated the effects of repeated low-level inflammation on the modulation of this pathway in a mouse cerebral endothelial cell line, analysing the effect on markers of endothelial cell activation and changes in cellular function, as a potential mechanism underlying the cerebrovascular response to low-level systemic inflammation. Mouse cerebral endothelial cells (bEnd.3) were exposed to hour-long treatments with phosphate buffered saline (PBS), a single low concentration of TNF (0.5 ng/mL), repeated low-concentration TNF (0.5 ng/mL, 1 h × 4 days) or a single cumulative concentration of TNF (2.0 ng/mL). RNA and protein were extracted 4 and 24 h after the final treatment for analysis of gene/protein expression using qRT-PCR and western blotting. Repeated inflammatory challenge significantly upregulated both Intercellular Adhesion Molecule 1 (ICAM1) and CXCL10 at the mRNA and protein levels. Signal transducer and activator of transcription 1 (STAT1) and phosphorylated-STAT1 (pSTAT1) protein levels were also increased at 4 and 24 h. Differentially, tumor necrosis factor receptor-associated factor 2 (TRAF2) and Interferon gamma (IFNγ) gene expression were decreased at 4 h, returning to control levels at 24 h. Functional analysis revealed significant increases in endothelial cell proliferation and apoptosis in the presence of repeated TNF exposure. CXCL10 knockdown with small interfering RNA (siRNA) reduced mean caspase 3/7 activity induced by the repeated inflammatory paradigm. These data suggest an upregulation of the TNF-CXCL10 pathway in response to low-level repetitive inflammation in mouse cerebral endothelial cells. Modulation of this pathway may represent a broad therapeutic target for neurovascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。