Nanofibrillar Cellulose Hydrogels with Anionic Surface Modifications for Modulating Macrophage Phenotype in 3D Culture.

具有阴离子表面修饰的纳米纤维纤维素水凝胶在三维培养中调节巨噬细胞表型

阅读:4
作者:Heilala Maria, Turpin Rita, Pahimanolis Nikolaos, Nonappa, Ikkala Olli, Klefström Juha, Munne Pauliina M
Anti-inflammatory M2 macrophages are highly relevant in various physiological processes ranging from tissue regeneration to cancer progression. However, conventional two-dimensional (2D) in vitro cell cultures limit our understanding of macrophage phenotypes and how they can be modulated for immunotherapeutic approaches. Moreover, there is a growing demand for scalable, animal-free hydrogels to replace animal-derived materials in three-dimensional (3D) in vitro models. In this study, we explore hydrogels based on plant-derived nanofibrillar cellulose (NFC), also known as cellulose nanofibrils (CNFs) or microfibrillated cellulose (MFC), for generating 3D in vitro models of M2-like macrophages from human blood monocytes. Notably, flow cytometry analysis shows that cells cultured in 3D phosphorylated NFC hydrogels show enhanced expression of the M2 macrophage marker CD206 compared to cells cultured in other negatively charged hydrogels prepared from native NFC or NFCs with carboxylate or sulfate modifications. Furthermore, the upregulation of CD206 expression in 3D phosphorylated NFC is comparable to the induction of CD206 in interleukin 4 (IL-4)-differentiated M2a macrophages. In addition, the cells in the phosphorylated NFC hydrogel show a differential cytokine profile compared to 2D cultured cells, secreting similar levels of tumor necrosis factor α (TNF-α), but 2.6-fold higher amounts of IL-1β and 1.2-fold higher amounts of IL-10. The results suggest that the conversion of monocytes to M2-like macrophages can be controlled by the phosphorylation of NFC, a strategy which does not require the addition of polarization factors like growth factors and cytokines conventionally used to generate macrophages in vitro. The findings highlight the importance of surface chemistry in matrix-guided macrophage polarization, paving the way for xeno-free yet bioactive 3D macrophage culture scaffolds for immunological research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。