Transmembrane helix 11 is a genuine regulator of the endoplasmic reticulum Ca2+ pump and acts as a functional parallel of β-subunit on α-Na+,K+-ATPase.

跨膜螺旋 11 是内质网 Ca2+ 泵的真正调节器,并且作为 α-Na+,K+-ATPase 的 β 亚基的功能平行物发挥作用

阅读:5
作者:Gorski Przemek A, Trieber Catharine A, Larivière Els, Schuermans Marleen, Wuytack Frank, Young Howard S, Vangheluwe Peter
The housekeeping sarco(endo)plasmic reticulum Ca(2+) ATPase SERCA2b transports Ca(2+) across the endoplasmic reticulum membrane maintaining a vital Ca(2+) gradient. Compared with the muscle-specific isoforms SERCA2a and SERCA1a, SERCA2b houses an 11th transmembrane segment (TM11) and a short luminal extension (LE) at its C terminus (2b-tail). The 2b-tail imposes a 2-fold higher apparent Ca(2+) affinity and lower V(max). Previously, we assumed that LE is the sole functional region of the 2b-tail and that TM11 is a passive element providing an additional membrane passage. However, here we show that peptides corresponding to the TM11 region specifically modulate the activity of the homologous SERCA1a in co-reconstituted proteoliposomes and mimic the 2b-tail effect (i.e. lower V(max) and higher Ca(2+) affinity). Using truncated 2b-tail variants we document that TM11 regulates SERCA1a independently from LE, confirming that TM11 is a second, previously unrecognized functional region of the 2b-tail. A phylogenetic analysis further indicates that TM11 is the oldest and most conserved feature of the 2b-tail, found in the SERCA pump of all Bilateria, whereas LE is only present in Nematoda and vertebrates. Considering remarkable similarities with the Na(+),K(+)-ATPase α-β interaction, we now propose a model for interaction of TM11 with TM7 and TM10 in the anchoring subdomain of the Ca(2+) pump. This model involves a TM11-induced helix bending of TM7. In conclusion, more than just a passive structural feature, TM11 acts as a genuine regulator of Ca(2+) transport through interaction with the pump.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。