A highly conserved neuronal microexon in DAAM1 controls actin dynamics, RHOA/ROCK signaling, and memory formation

DAAM1 中高度保守的神经元微外显子控制着肌动蛋白动力学、RHOA/ROCK 信号传导和记忆形成。

阅读:1
作者:Patryk Poliński ,Marta Miret Cuesta # ,Alfonsa Zamora-Moratalla # ,Federica Mantica ,Gerard Cantero-Recasens ,Carlotta Viana ,Miguel Sabariego-Navarro ,Davide Normanno ,Luis P Iñiguez ,Cruz Morenilla-Palao ,Patricia Ordoño ,Sophie Bonnal ,Jonathan D Ellis ,Raúl Gómez-Riera ,Hugo Fanlo-Ucar ,Dominic S Yap ,María Martínez De Lagrán ,Álvaro Fernández-Blanco ,Cristina Rodríguez-Marin ,Jon Permanyer ,Orsolya Fölsz ,Eduardo Dominguez-Sala ,Cesar Sierra ,Diana Legutko ,José Wojnacki ,Juan Luis Musoles Lleo ,Maria Pia Cosma ,Francisco José Muñoz ,Benjamin J Blencowe ,Eloisa Herrera ,Mara Dierssen ,Manuel Irimia
Actin cytoskeleton dynamics is essential for proper nervous system development and function. A conserved set of neuronal-specific microexons influences multiple aspects of neurobiology; however, their roles in regulating the actin cytoskeleton are unknown. Here, we study a microexon in DAAM1, a formin-homology-2 (FH2) domain protein involved in actin reorganization. Microexon inclusion extends the linker region of the DAAM1 FH2 domain, altering actin polymerization. Genomic deletion of the microexon leads to neuritogenesis defects and increased calcium influx in differentiated neurons. Mice with this deletion exhibit postsynaptic defects, fewer immature dendritic spines, impaired long-term potentiation, and deficits in memory formation. These phenotypes are associated with increased RHOA/ROCK signaling, which regulates actin-cytoskeleton dynamics, and are partially rescued by treatment with a ROCK inhibitor. This study highlights the role of a conserved neuronal microexon in regulating actin dynamics and cognitive functioning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。