Biofilm Dispersal and Wound Infection Clearance With Preclinical Debridement Agents.

利用临床前清创剂清除生物膜和伤口感染

阅读:6
作者:Schneider Rebecca Elizabeth, Hamdan Jason Valentino, Rumbaugh Kendra Pauline
Biofilms complicate wound care by causing recurrent infections that are often resistant to debridement and are highly antibiotic-tolerant. We investigated whether the addition of a biofilm dispersal agent could improve the efficacy of debridement. The previous studies have indicated that a glycoside hydrolase cocktail of alpha-amylase and cellulase can act as a potent biofilm dispersal agent. With in vitro and ex vivo Pseudomonas aeruginosa biofilm models, we compared glycoside hydrolases against other, clinically relevant, enzymatic debridement agents (papain, bromelain, and collagenase). Glycoside hydrolase biofilm dispersal was dose-dependent. However, at doses of 1% or above, glycoside hydrolases outperformed, or were comparable, to other enzymatic debridement agents. With our in vivo surgical wound infection model, we evaluated biofilm dispersal using infection dissemination as a proxy. We found that sharp debridement followed by multiple glycoside hydrolase treatments enhanced biofilm dispersal. Furthermore, a single dose of glycoside hydrolase in combination with debridement decreased infection load in acute wounds. Similarly, when we treated established 5-day-old infections, we saw a decrease in infection load and no infection dissemination. Overall, our data suggest that debridement enhances the efficacy of a topical antibiotic ointment, allowing for greater infection clearance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。