Master transcription-factor binding sites constitute the core of early replication control elements.

主转录因子结合位点构成早期复制控制元件的核心

阅读:4
作者:Turner Jesse L, Hinojosa-Gonzalez Laura, Sasaki Takayo, Uchino Satoshi, Vouzas Athanasios, Soto Mariella S, Chakraborty Abhijit, Alexander Karen E, Fitch Cheryl A, Brown Amber N, Ay Ferhat, Gilbert David M
Eukaryotic genomes replicate in a defined temporal order called the replication timing (RT) program. RT is developmentally regulated with the potential to drive cell fate transitions, but mechanisms controlling RT remain elusive. We previously identified "Early Replication Control Elements" (ERCEs), cis-acting elements necessary for early RT, domain-wide transcription, 3D chromatin architecture and compartmentalization in mouse embryonic stem cells (mESCs), but deletions identifying ERCEs were large and encompassed many putative regulatory elements. Here, we show that ERCEs are compound elements, whose RT activity can largely be accounted for by multiple binding sites for diverse master transcription factors (subERCEs). While deletion of subERCEs had large effects on both transcription and replication timing, deleting transcription start sites eliminated nearly all transcription with only moderate effects on replication timing. Our results suggest a model in which subERCEs are a class of transcriptional enhancers that can also organize chromatin domains structurally to support early replication timing, potentially providing a feed-forward loop to drive robust epigenomic change during cell fate transitions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。