Microbial β-Glucuronidase Hydrogel Beads Activate Chemotherapeutic Prodrug.

微生物β-葡萄糖醛酸酶水凝胶珠激活化疗前药

阅读:6
作者:Jeong Yoon, Han Xiaoxue, Vyas Khushali, Irudayaraj Joseph
Bacteria-assisted chemotherapeutics have been highlighted as an alternative or supplementary approach to treating cancer. However, dynamic cancer-microbe studies at the in vitro level have remained a challenge to show the impact and effectiveness of microbial therapeutics due to the lack of relevant coculture models. Here, we demonstrate a hydrogel-based compartmentalized system for prodrug activation of a natural ingredient of licorice root, glycyrrhizin, by microbial β-glucuronidase (GUS). Hydrogel containment with Lactococcus lactis provides a favorable niche to encode GUS enzymes with excellent permeability and can serve as an independent ecosystem in the transformation of pro-apoptotic materials. Based on the confinement system of GUS expressing microbes, we quantitatively evaluated chemotherapeutic effects enhanced by microbial GUS enzyme in two dynamic coculture models in vitro (i.e., 2D monolayered cancer cells and 3D tumor spheroids). Our findings support the processes of prodrug conversion mediated by bacterial GUS enzyme which can enhance the therapeutic efficacy of a chemotherapy drug under dynamic coculture conditions. We expect our in vitro coculture platforms can be used for the evaluation of pharmacological properties and biological activity of xenobiotics as well as the potential impact of microbes on cancer therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。